下載手機汽配人

昨天新聞說汽車鋼強度韌性提高100%,是真的嗎?

2-23新聞說中國的汽車鋼強度、韌性提高100%,我不相信!我想知道這項新研究汽車鋼的成本提高了多少,如果不計成本,那當然可以100%。有內行可以幫忙解釋一下嗎?
提問者:網(wǎng)友 2017-07-07
最佳回答
  提高鋼的強度既簡便又便宜的方法是增加碳含量。然而,這種方法使其他所希望的性能遭到消弱,如成型性,焊接性,韌性和其他一些性能。幾個性能都重要的情況下的幾種應用,碳含量必須保持在低水平。在低碳鋼中為了獲得高強度并同時保持高水平的綜合性能最經(jīng)濟的方法是應用微合金化技術。   為什么要高強度   應用高強度鋼可以降低板厚度從而在許多應用中降低重量。在汽車工業(yè),車體減輕可以節(jié)省燃油從而保護環(huán)境(減少排氣量)。在造船工業(yè),船體減輕可以裝載更多的貨物。圖3顯示的是管道在管線結構中的應用。對于一個18m長,外徑1000mm的管道,當用高強度鋼X70代替低強度鋼時其重量可以從14t降低到6t。另一個重要的例子是民用建筑,如圖4所示,的建筑形式,用460MPa的高強度鋼代替低強度鋼(235MPa)可以節(jié)省材料40%,重量降低超過50%,焊接材料可以節(jié)約超過70%。   微合金化的效果   圖5表明了主要微合金化元素Nb,V和Ti對提高強度和韌性的作用以及其強化機理。這三個元素均是通過細化晶粒和沉淀強化提高強度,但每種機理強化程度不同。Nb具有最強的晶粒細化強化效果,而V具有最強的沉淀強化效果,Ti介于上述兩者之間。如圖6所示,晶粒細化是唯一的能夠同時提高韌性的強化機理。因此,當同時需要高強度和高韌性綜合性能時就需要添加鈮,譬如管線鋼和結構鋼。在圖5中還可以反映出鈮是經(jīng)濟有效的。如要使低碳鋼的屈服強度提高100MPa,需要添加0.02%的鈮,而釩則需要添加兩倍的量。   鈮的晶粒細化引起的強烈效果與其在軋制時通過固溶,特別是碳氮化鈮析出延遲奧氏體再結晶有關系。圖7顯示了分別含Nb,V,Ti鋼的效果。鈮阻止在軋制最后階段奧氏體的再結晶,促進了扁平晶粒的變形,從而導致非常細的鐵素體晶粒。   鈮的另一個重要影響是在中低碳鋼中降低轉變溫度促使貝氏體組織的形成,這一研究已經(jīng)比較多了,如圖8所示。降低轉變溫度是由于在軋制過程中仍有一部分鈮留在固溶體中而沒有發(fā)生沉淀反應。這一效果在同時加入Nb和Mo或同時加入Nb和B時由于協(xié)同作用而加強,如圖所示。其中一個實際例子是X80管線鋼,鐵素體-低珠光體組織在得到韌性要求的同時卻達不到強度級別。   微合金化不僅僅對軋制產品有作用。V可以在熱處理級別鋼種提高強度,而鈮可以細化晶粒。如圖9所示,在正常熱處理之后,鈮明顯的細化了晶粒。   為了得到所希望的高水平性能,在煉鋼時很好的控制雜質含量如S、N、P等也是非常重要的,特別是對需要高韌性的板材產品。圖10表明了S是如何影響沖擊性能的。為了把S含量控制在低的水平,應用硫化物形狀控制(通常用鈣處理)對于避免生成對橫向韌性有損害的延長硫化鎂是非常重要的。   如圖11所示,氮對熱影響區(qū)的韌性的損害是非常大的,因此低氮是值得提倡的。這一損害可以用鈦固定游離的氮以降低其影響。氮化鈦在高溫時非常穩(wěn)定,因此它可以阻止晶粒的增長。圖12顯示了鈦固氮處理提高熱影響區(qū)韌性的益處。然而用鈦需要很好的控制手段。加入到鋼中的鈦的量要以固定氮所需要的量為上限。如果多加了鈦將促使形成碳化鈦,這樣對熱影響區(qū)的韌性有損害,如圖13所示。氮對焊接金屬的韌性也是有影響的,如圖14。   板材產品的微合金化   板材產品方面的技術進展可以作如下描述:   50年代后期: Nb的引入   60年代: 控制軋制的試驗探索   70年代: 全面實行微合金化和控制軋制   80年代: 實行加速冷卻   90年代: 實行直接淬火   圖15表示的是微合金化元素Nb、V和Ti在不同的冷卻工藝下在板材中的強化效果,Nb的提高強韌性的效果尤為突出。   微合金化板材有著非常廣泛的應用,如管線鋼,造船鋼,海洋平臺,民用建筑(橋梁、高架橋,建筑)以及其它領域。   如表1所示,管線鋼產品的發(fā)展,表明雖然碳的含量在不斷降低,但其強度卻在增加,這一原因前面已經(jīng)說明。提高到X80級的產品已經(jīng)進行商業(yè)生產,一些鋼鐵公司已經(jīng)開發(fā)了X100級別。提高抗氫致裂紋需要更嚴格的煉鋼工藝并需要非常低的碳和硫含量,如表2所列的工業(yè)產品。   最后,表3對幾種管線鋼進行了總結,包括熱軋和爐卷產品。在表中我們可以注意到一些鋼中的含鈮量高于正常情況的含鈮量,在0.07~0.09%之間。這些鋼最近幾年在北美已經(jīng)進行商業(yè)生產。高鈮含量可以把奧氏體再結晶延遲到更高的溫度(如圖7所示),這使控軋工藝更加寬松,如高的終軋溫度,這對有功率限制的鋼板軋機是有益的。而且,這些超低碳高Nb鋼具有非常好的韌性特性。   對于海洋平臺和造船業(yè)來講,自70年代以來的趨勢是降低含碳量,特別是在高焊接工作量并需要提高焊接性能的情況下。表4顯示的是分別通過正常的熱處理和加速冷卻工藝生產的335MPa級的典型的化學成分。   在民用建筑方面,圖16表明了在瑞典現(xiàn)代橋梁應用的高強度微合金化鋼。用高強度鋼,屈服強度460MPa級,熱機械工藝(TMCP)可以降低重量15,000t,降低費用2500萬美元。表5顯示的是50mm厚結構板材產品典型的化學成分,工藝分別為正常情況(N),控軋(TM),淬火和回火(QT),熱機械工藝(TMCP)和直接淬火(DQ)。最近幾年,安全防火變得越來越重要。如圖17所示,防火結構鋼已經(jīng)發(fā)展起來,該鋼添加Nb和Mo以提高高溫強度。   汽車工業(yè)用熱軋和冷軋薄鋼板   在70年代初第一次石油危機之后,微合金化熱軋和冷軋薄鋼板在汽車工業(yè)獲得了廣泛應用。用高強度鋼代替低強度鋼過去是現(xiàn)在依然是降低汽車車重的有效方法,以節(jié)省燃料。安全方面的需要也激發(fā)了高強度鋼的應用。   熱軋薄鋼板   熱軋低合金高強度鋼(HSLA)薄鋼板主要用于卡車的底盤部分,也用于大客車的車輪,輪轂等部件。傳統(tǒng)的屈服強度水平在350MPa到550MPa之間,具有鐵素體加少量珠光體組織。表6列出了一些典型的化學成分。過去,這些鋼也用Ti作為主要微合金化元素來生產,尤其是在過去鋼的含硫水平比較高。加入鈦的另外一個主要作用是控制硫化物的形狀。但是由于其碳化物形成的動力學原因,軋制工藝十分復雜,大部分情況下是不允許的,以避免出現(xiàn)典型的最終產品性能大范圍的分散,圖18。在鐵素體-少量珠光體鋼中,當薄板的厚度方向需要使用兩種微合金化元素來獲得更高的強度時,Nb和V的結合將使性能分散范圍小些。以上考慮涉及到Ti的碳化物沉淀強化作用。如果只用來固定N,則Ti很有效。在含Nb鋼中,強度進一步提高,因為更多的Nb將使鑄造性能也得到改善。   最近,開發(fā)出690MPa級卡車大梁用鋼,它利用了在由熱帶軋機直接軋出的貝氏體鋼中所有的強化機理,圖19。表7列出了兩種歐洲產品的合金設計。   鐵素體-貝氏體鋼,含10~30%的貝氏體,用于車輪、輪轂和底盤,它比鐵素體-珠光體鋼具有更優(yōu)越的凸緣壓邊延伸性能。與鐵素體-馬氏體——雙相鋼相反,當焊接的輪轂輪箍被拉伸時,使用這種鋼不會出現(xiàn)局部頸縮。如圖20所示,當合金設計、軋制參數(shù)——卷取溫度——得到控制從而第二相主要為貝氏體相時,就可達到強度和成型性的最優(yōu)配合。   冷軋薄鋼板   傳統(tǒng)的微合金高強度冷軋薄板用鋼在汽車工業(yè)已使用了25年,但部分汽車零件不需要高的成型性。圖21顯示了罩式退火鋼板的典型化學成分。傳統(tǒng)的微合金鋼也可在連續(xù)退火線上生產,此時,對于給定的鋼種,可以獲得更高的強度。例如,如圖22所示的用于汽車側擋板的雙相鋼。   更復雜形狀的產品——汽車車體(integrated   panels)的開發(fā)以及傳統(tǒng)鋼達不到罩式退火同樣的成型性而引入連續(xù)退火生產薄鋼板,需要開發(fā)一種新的類型鋼,即無間隙鋼——超低碳IF鋼。   無間隙鋼添加Ti、Nb或Ti+Nb生成無間隙原子。尤其在鍍鋅產品中,TiNb無間隙鋼可獲得最優(yōu)配合的機械性能以及更好的表面質量,如圖23、24、25、26、27、28所示。僅添加Ti的無間隙鋼易于產生表面缺陷。   匹茲堡大學的最新研究工作已經(jīng)表明,當鈮在鐵素體晶界溶解時,它能起到重要的作用。晶界處溶解的鈮改善冷加工脆性,并能降低鍍鋅產品的粉化趨勢。   用于鍛造的微合金鋼   微合金化技術在鍛造汽車零件鋼中的應用允許除掉傳統(tǒng)的淬回火熱處理生產汽車零件,從而顯著節(jié)省生產成本。表8列出了一些在市場上出現(xiàn)的鋼種。   現(xiàn)已生產了僅含微合金元素V、僅含Nb以及Nb、V復合微合金鋼。研究表明,復合添加Nb和V對提高強度比單獨添加這兩種微合金元素中的任何一種更有效。Nb提高了V的析出潛能。   在這種產品上,最新成果包括有直接淬火(馬氏體)或空冷獲得的低碳馬氏體+貝氏體或貝氏體鋼,它們表現(xiàn)出韌性得到改善。表9給出了一個例子。   高強度緊固件與懸掛彈簧   傳統(tǒng)的冷鍛高強度緊固件用鋼為中碳鋼,由淬回火得到最終產品所需的性能。用低碳微合金鋼替代中碳鋼,不需要熱處理就能得到最終所需的機械性能,并且消除了在收線過程中的中間球化處理。表10給出了8.8級鋼(鐵素體—珠光體)與10.9級鋼(鐵素體—貝氏體)的化學成分。   懸掛彈簧是另一種使用微合金化技術而達到減重的產品。北美生產出熱處理后抗拉強度為2000MPa級、HRc為53-55的鋼?;瘜W成分與機械性能在表11中列出。   滲碳鋼   在滲碳處理鋼中,尤其在溫鍛條件下,晶粒非正常長大較為普遍。這些鋼中加入鈮抑制晶粒非正常長大,這項技術已在日本使用多年,最近在北美也取得應用。微合金元素添加到這些鋼中而帶來的另一個好處是通過更高的加熱溫度而有可能減少滲碳時間。鈮的加入抑制晶粒長大,因而使在更高溫度滲碳成為可能。   結構用型鋼   在結構用型鋼技術上的最新主要進展是僅使用一種化學成分就可滿足幾種技術條件的含鈮結構型鋼/橫梁鋼已工業(yè)化。這種由Chaparral鋼鐵公司開發(fā)的“多級別”鋼,典型的成分僅含0.01-0.02%Nb(目標為0.015%),這足夠將ASTM   A36的屈服強度提高到345MPa以上而抗拉強度限制在550MPa以下,從而既能滿足ASTM A36又能滿足 ASTM   A572-50的技術條件。鈮是選擇性添加微量元素,因為為了滿足50級鋼的最低屈服強度要求,可能要多添加一些V,為0.02-0.03%(與0.015%Nb相比),這會提高結構型鋼的抗拉強度,使它接近或超過550MPa,而當滿足A572-50的技術要求時,又超過了A36所允許的要求。其它ASTM鋼的技術要求可由A572-42、A572-50、A529-42、A5290-50、A709-36與A709-50等多級別鋼滿足。   鋼筋   該產品用于大型混凝土結構以提高抗拉能力。大直徑高強度級別鋼筋添加了V和Nb。一些現(xiàn)代軋鋼廠采用水冷技術取代微合金化提高強度。圖29為V和Nb在焊接用鋼筋中的強化效果。   世界微合金化鋼的發(fā)展   世界微合金化鋼的發(fā)展可由Nb的總消耗量來描述,因為Nb是一種主要微合金化元素,并且75%的Nb用于微合金化鋼,見圖30。70年代Nb的消耗量急劇上升。當時控軋工藝在全世界范圍內被采用,同時汽車工業(yè)使用量也在增加。80年代是穩(wěn)定期,但微合金化鋼產量繼續(xù)增加。Nb消耗量的穩(wěn)定是因為鋼鐵廠效率的提高,如連鑄設備的安裝、加速冷卻,對給定量的最終產品,這可節(jié)省原材料。然而在Nb消耗量達到飽和點后,在90年代Nb的需求又顯著增加。這是受許多重要的鋼鐵公司產品結構調整的影響,他們的品種集中在附加值產品,包括微合金化鋼。圖31很好的顯示出在歐洲微合金化鋼增加情況。從圖中明顯看出,在該地區(qū),與粗鋼相比,F(xiàn)eNb的消耗量顯著增加。在歐洲,每噸鋼中的FeNb為60g。   除了微合金鋼產量增加外,Nb使用領域也在增加。如圖32所示,在70年代中期,Nb主要用在管線鋼產品。為開發(fā)該產品中而發(fā)展起來的微合金化技術在隨后的時間里被應用在其他領域,如該圖所示的2000年情況。   結論   微合金化技術是一條生產高強度和其它所需性能的高質量產品的經(jīng)濟有效途徑。   世界范圍內的微合金化鋼的產量不斷增加。新的鋼種已開發(fā)出來,并應用在許多領域,保持著鋼在材料領域的良好競爭能力。
回答者:網(wǎng)友
產品精選
搜索問答
還沒有汽配人賬號?立即注冊

我要提問

汽配限時折扣

本頁是網(wǎng)友提供的關于“昨天新聞說汽車鋼強度韌性提高100%,是真的嗎?”的解答,僅供您參考,汽配人網(wǎng)不保證該解答的準確性。